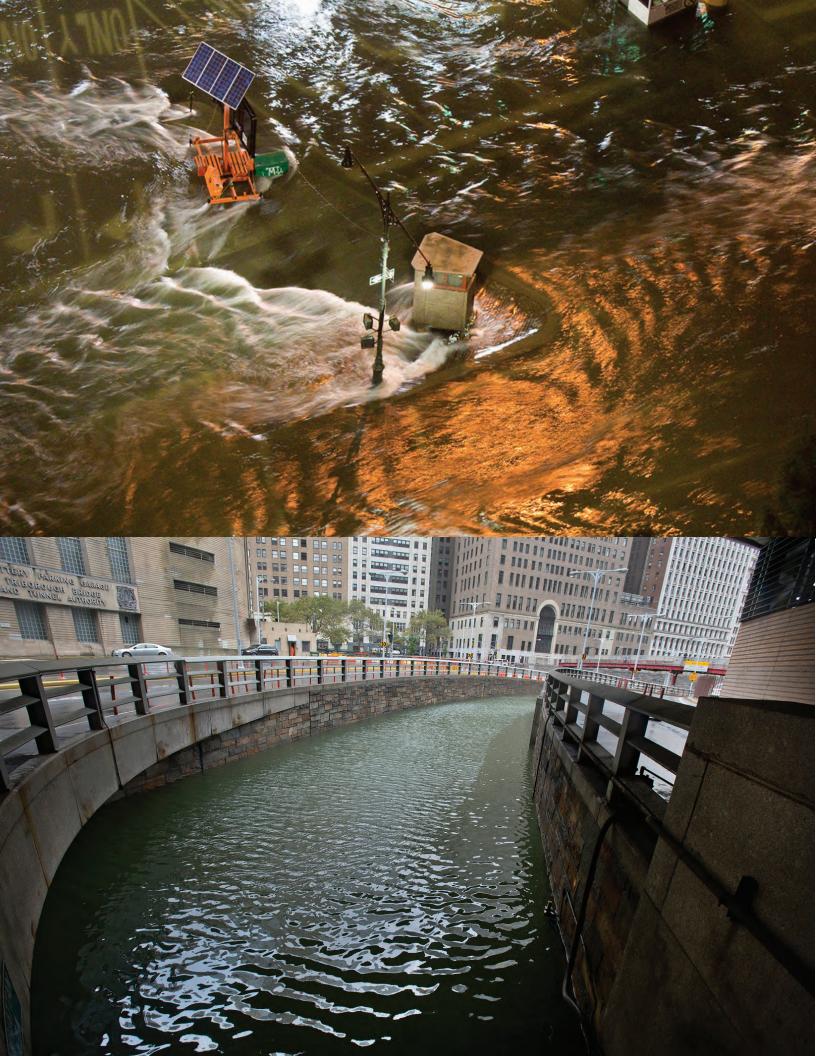


"Climate change is an undeniable scientific fact. Period.


To deny climate change is to deny reality."

Andrew M. Cuomo Governor, State of New York July 18, 2019

Contents

Executive Summary	3
MTA New York City Transit Subways and Staten Island Railway	
148th Street Portal	4
Montague Tube	5
St. George Terminal	6
Coney Island Yard	7
Rockaway Line	9
MTA Bus Company and New York City Transit Buses	
Michael J. Quill Bus Depot	10
Far Rockaway Bus Depot	11
MTA Metro-North Railroad	
Substations	13
Harlem River Lift Bridge Facility House Restoration	13
Hudson Line Mitigation Project	13
MTA Long Island Rail Road	
Long Beach Branch Signal and Communications Systems	15
Long Beach Branch Substations	15
MTA Bridges & Tunnels	
Hugh L. Carey Tunnel	17
Rockaway Bridges (Marine Parkway Bridge & Cross Bay Bridge)	17
Conclusion	19
Acknowledgements	20

"Superstorm Sandy threw the MTA the biggest curve ball in a generation and this report details how we rose to the challenge. From the smallest manhole cover to the flood barrier surrounding Coney Island Yard; we strengthened our system's resiliency for extreme climate events. While there is always more to be done, we are very proud of what we have accomplished to date."

Patrick J. Foye, MTA Chairman & CEO
Metropolitan Transportation Authority
2019

The Maturing of Climate Adaptation at the MTA

The Climate Adaptation Task Force ("the Task Force") was formed by the MTA Chairman & CEO in 2013, one year after Superstorm Sandy caused unprecedented destruction to virtually every part of the MTA system. Boats washed up onto commuter railroad tracks, the Hugh L. Carey tunnel and all but one subway river tubes flooded, and power and communications suffered extensive damage. In the end, nothing was spared.

In the immediate aftermath of Sandy, both the MTA and the metropolitan region we serve found resilience in operational means. The MTA NYCT Department of Buses set up a bus bridge to transport passengers that the flooded subway river tubes could not. When the Rockaways connecting line was washed away, the NYCT Department of Subways transported subway cars on trucks to the coastal Queens community to ensure their service would resume. The MTA met the challenge in order to keep people moving.

The next phase was one of analysis and design. The Task Force played a key role in gathering information and bringing consultants, vendors, and employees of non-MTA agencies (New York City DOT, The Port Authority of New York & New Jersey, and New Jersey Transit) to share and learn from one another's experiences. Members of the Task Force heard presentations, visited sites to see product demonstrations, and in some instances specified the use of these products for MTA projects. New standards evolved with structural designs to adapt to this new normal we were now facing. One design standard in particular stands out: the Design Flood Elevation – the height that flood waters are expected

to rise to in a future storm, and therefore the height against which we must defend our facilities. This new standard was arrived at through extensive analysis. Eventually, the commuter railroads, NYCT, and B&T all settled on different Design Flood Elevations:

Agency	Design Flood Elevation
NYCT	Category 2 + 3'
MNR	ABFE + 4'
LIRR	ABFE +4'
B&T	500 year flood

Now, more than five years after the Task Force was established, most projects reported on in the 2017 Resiliency Report are either significantly underway or completed. At street level, we built flood gates into flood-prone train station entrances, while hatches and manhole covers were redesigned to withstand large volumes of standing water. Underground, marine cabling replaced the regular wiring in the under-river tubes to increase flood resiliency. This current iteration of the Resiliency Report focuses on the work that has been completed thus far in addition to providing updates on the larger, more complex projects that remain in progress.

Climate science is ever-changing. The Task Force is committed towards keeping MTA climate adaptation in lock-step with what the latest science is telling us. This will ensure that the latest analyses, models, and projections are baked into MTA climate preparedness as we move forward.

Project Updates (All project updates as of 1/14/2019)

MTA New York City Transit Subways and Staten Island Railway

148th Street Portal

Project Description: Located where tracks emerge from the subway to the above-ground terminal station, the 148th Street Portal is extremely vulnerable to flooding from the nearby Harlem River. The project will mitigate flooding of the portal and adjacent tunnels through a system of flood logs that can be deployed within hours of an oncoming storm. This replaces the labor-intensive and less reliable temporary wooden barrier demonstrated below.

Update	Resiliency
Dollars Committed	\$5.0m
Progress	4%
Expected	End of 2021

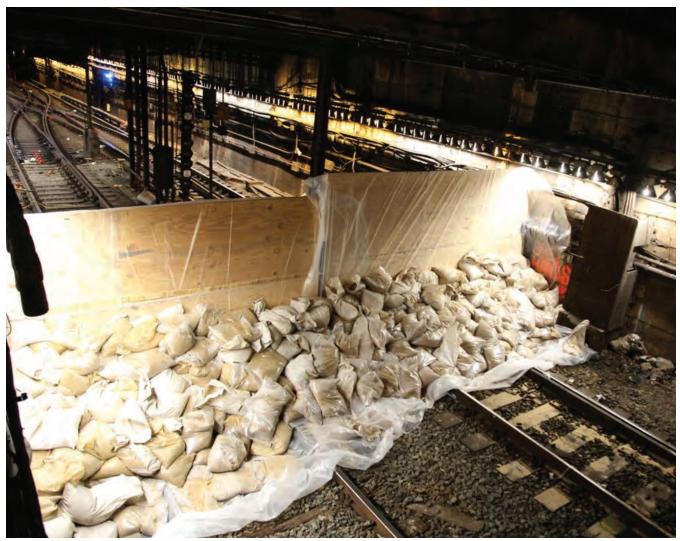


FIGURE 1: PROTECTION OF 148 STREET PORTAL BEFORE SUPERSTORM SANDY.

FIGURE 2: RESTORED MONTAGUE TUBE.

FIGURE 3: NEWLY INSTALLED WATERTIGHT DOORWAY.

MTA New York City Transit Subways and Staten Island Railway Montague Street Tube

Project Description: During Superstorm Sandy, the Montague Tube, the under-river subway tube servicing the R subway line, flooded at a length of roughly 4,000 feet and a depth of 20 feet with 27 million gallons of debris-filled saltwater. The extensive damage suffered from the storm required complete shutdown of the tube from August 2013 - September 2014. In addition to restoration, resiliency measures completed in this project included the installation of marine cabling, hardening of pump systems, and protecting the electrical facilities with watertight doors

Update	Restoration	Resiliency
Dollars Committed	\$189.7m	\$56.4m
Progress	100%	100%
Expected	Completed, March 2015	Completed, March 2015

MTA New York City Transit Subways and Staten Island Railway St. George Terminal

Project Description: St. George serves as the Staten Island Railway's main terminal. Superstorm Sandy flooded all twelve tracks and overwhelmed the terminal's drainage capacity. In addition to restoration, this project includes resiliency measures such as a permanent flood barrier, improved drainage systems, and more water resistant, recycled plastic track tie infrastructure.

Update	Restoration	Resiliency
Dollars Committed	\$115.3m	\$73.5m
Progress	100%	2%
Expected	Completed, March 2017	Mid-2021

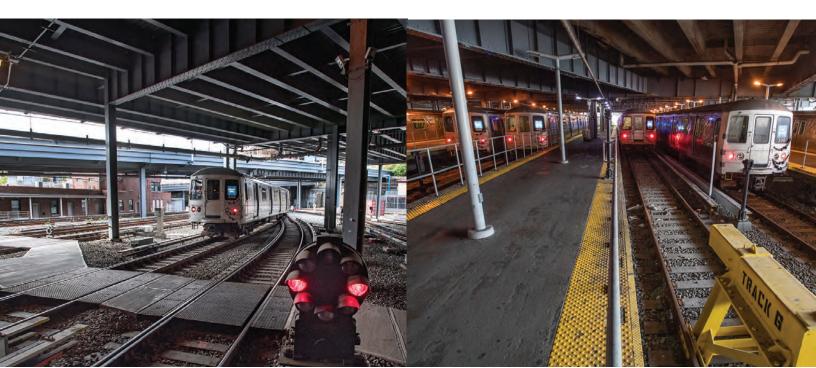


FIGURE 4: ST. GEORGE TERMINAL WITH NEW, FLOOD RESILIENT RECYCLED PLASTIC TIES.

FIGURE 5: INSTALLATION OF THE PERMANENT PERIMETER FLOOD BARRIER AT CONEY ISLAND YARD.

MTA New York City Transit Subways and Staten Island Railway

Coney Island Yard

Project Description: After Superstorm Sandy caused extensive flooding in this critical train yard, near-term and long-term flood mitigation

measures were implemented to address critical climate vulnerabilities. Near-term projects include a temporary perimeter barrier and improved drainage to prevent pooling. Longer-term projects, funded entirely by an FTA resiliency grant, include a permanent flood barrier wall and drainage improvements.

Update	Restoration	Resiliency: Near Term	Resiliency: Long Term
Dollars Committed	\$200.7m	\$13.2m	\$516m
Progress	7%	100%	4%
Expected	End of 2023	Completed, February 2015	End of 2023

MTA New York City Transit Subways and Staten Island Railway Rockaway Line

Project Description: The Rockaway A subway line is an above-ground and low-level track that suffered extensive damage during Superstorm Sandy. Track and key system restorations are complete and future resiliency measures include the protection of critical assets with a 13,000 foot dual-purpose flood and debris wall.

Update	Restoration	Resiliency
Dollars Committed	\$75.4m	\$221.5m
Progress	100%	26%
Expected	Completed, December 2013	TBD

FIGURE 6: DUAL PURPOSE FLOOD AND DEBRIS WALL INSTALLED AROUND HAMMELS WYE FACILITY AND FAR ROCKAWAY BRANCH.

FIGURE 7: DEBRIS WALL ON THE PERIMETER OF THE MICHAEL J. QUILL BUS DEPOT.

MTA Bus Company and New York City Transit Buses

Michael J. Quill Bus Depot

Project Description: This project will enhance the roof protection at Michael J. Quill Bus Depot. A new mesh debris shield is near completion along the parapet edge and the exterior west-facing wall of the roof. This project is also part of the MTA's Small Business Federal Mentoring Program (SBFMP).

Update	Resiliency
Dollars Committed	\$3.2m
Progress	92%
Expected	Mid-2019

Far Rockaway Bus Depot

Project Description: This project repaired damages to the Far Rockaway Depot that occurred as a result of Superstorm Sandy. Work focused on the bus maintenance and service areas, interior office spaces, employee facilities, various fixed/non-fixed equipment, electrical distribution equipment, and flood proofing of the facility.

Update	Resiliency
Dollars Committed	\$11.4
Progress	100%
Expected	Completed, November 2018

FIGURE 8: WATERPROOF FLOOR AND WALL TILING.

MTA Metro-North Railroad

Substations

Project Description: The scope requires the raising of three specific DC traction power substations on the Hudson Line that were damaged by Superstorm Sandy. The Hudson Line substations included in this scope are Riverdale, Tarrytown, and Harmon Yard.

Update	Resiliency
Dollars Committed	\$45.6m
Progress	89%
Expected	Mid-2019

Harlem River Lift Bridge Facility House Restoration

Project Description: As a result of Superstorm Sandy, flooding occurred at the Manhattan and Bronx substation locations of the Harlem River Lift Bridge. This flooding caused extensive damage to equipment, which is critical for MNR's traction and bridge facility power. The project scope is to add alternative, resilient forms of power supply for the bridge control through a power tie cable transfer connection via a micro-tunnel between Manhattan and the Bronx.

Update	Resiliency
Dollars Committed	\$7.6m
Progress	67%
Expected	Early 2020

Hudson Line Mitigation Project

Project Description: The Sandy Hudson Line Power/C&S Infrastructure Design-Build Project replaces existing damaged, degraded, or destroyed critical power and C&S (communications and signals) systems infrastructure along the flood prone MNR Hudson Line, making these systems more resilient in order to prevent or limit future damage that would degrade power and C&S electrical continuity.

Update	Resiliency
Dollars Committed	\$33.2m
Progress	37%
Expected	Early 2021

MTA Long Island Rail Road

Long Beach Branch Signal and Communications Systems

Project Description: Replacement of damaged signal, power and communications system components and cabling along the right-of-way of this low-elevation, coastal commuter rail line. Specific systems include grade crossings and station platforms; central instrument locations at Long Beach Yard and Lead Tower; signal huts, impedance bonds and battery sets; grade crossings including manholes, conduit, cabling, gates, cases and control huts; signal cabling, aerial messenger cable and cases; communications network cabling, aerial messenger cable and cases which support the communication network; communications equipment rooms at station buildings; third rail cabling and conduits, and switch boxes; and station platform lighting at Oceanside and Island Park, including cabling, conduits, poles, fixtures and lamps.

Update	Resiliency		
Dollars Committed	\$68.6m		
Progress	63%		
Expected	End of 2021		

Long Beach Branch Substations

Project Description: Replace three Long Beach Branch substations at Oceanside, Oil City and Long Beach Yard damaged by Superstorm Sandy storm surge flooding.

Update	Resiliency
Dollars Committed	\$50.1m
Progress	100%
Expected	Completed, January 2018

FIGURE 12: FROM LEFT TO RIGHT, RAISED SUBSTATIONS AT OCEANSIDE, OIL CITY, AND LONG BEACH.

FIGURE 13: PORTAL FLOOD GATE AT HLCT MANHATTAN WEST IN CLOSED POSITION

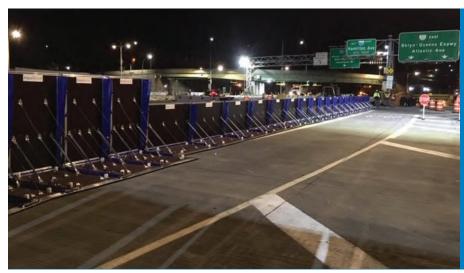


FIGURE 14: RAISED SEAWALL AT GOVERNORS ISLAND VENTILATION BUILDING

FIGURE 15: DEPLOYABLE AQUAFENCE BARRIERS

MTA Bridges & Tunnels

Hugh L. Carey Tunnel

Project Description: The Hugh L. Carey Tunnel flooded with approximately 60 million gallons of saltwater during Superstorm Sandy. Short-term adaptations for this high-trafficked, Manhattan-Brooklyn connection included flood-proofing and relocating the data center above FEMA 500-year flood level. Long-term adaptations included the installation of deployable and permanent barriers at each tunnel plaza to form a protected perimeter, installation of hinged steel flood gates at tunnel portals, installation of emergency generator, installation of seawall at Governors Island Ventilation Building, replacement of drainage pumps, and other flood mitigation measures.

Update	Restoration	Resiliency
Dollars Committed	\$312.8m	\$54.5m
Progress	100%	100%
Expected	Completed, March 2018	Completed, December 2018

Rockaway Bridges (Marine Parkway Bridge & Cross Bay Bridge)

Project Description: Two toll bridges, the Marine Parkway Bridge and the Cross Bay Bridge, on the Rockaway Peninsula suffered flood damage during Superstorm Sandy. Resiliency efforts included repairing the seawall and shoreline and raising the elevation of electrical equipment and substations.

Update	Restoration	Resiliency	
Dollars Committed	\$22.7m		
Progress	100%	100%	
Expected	Completed, 2013	Completed, 2018	

FIGURE 16: RESTORED SEAWALL AND PEDESTRIAN WALKWAY AT MARINE PARKWAY BRIDGE

FIGURE 17: RESTORED ABUTMENT AT CROSS BAY BRIDGE

Looking Ahead...

Roofs are an important asset in both climate adaptation and mitigation. As part of our climate adaptation portfolio, the MTA has planted green roofs to absorb precipitation, reduce storm water discharge, and alleviate the urban heat island effect. These initiatives, however, do come with a capital cost. Looking forward, as we expand our focus to include climate mitigation, we are continuing to leverage roofs as an asset, but with an alternative financing structure.

On Earth Day 2019, the MTA launched the MTA Solar initiative to generate clean, emission-free electricity that will open a new frontier of untapped revenue: leasing industrial roof space and commuter parking lots to companies for solar power development.

The MTA has identified more than 100 bus depots, train yards, repair shops, and commuter lots across all MTA agencies – totaling more than 10 million square feet – that are suitable for solar development. Fully realized, these properties present an opportunity to develop more than 100 megawatts of emission-free electricity for New Yorkers – enough to power 18,000 households. The MTA hopes to achieve a significant new revenue stream from this activity, with little to no capital investment of its own. MTA Solar creates a new path for the MTA to lead in Climate Change mitigation.

Acknowledgements

Climate Adaptation Task Force, MTA Headquarters Department of Environmental Sustainability & Compliance

Executive Sponsors

Don Spero, MTA Headquarters

Porie Saikia-Eapen, Environmental Sustainability & Compliance, MTA Headquarters

Editors

Projjal Dutta, Sustainability Initiatives, MTA Headquarters

Paul Racco, Environmental Sustainability & Compliance, MTA Headquarters

Contributors

James Bakleh, MTA Regional Bus Company, MTA New York City Transit

Jacob Balter, Strategic Investments, MTA Long Island Rail Road

Robbie Benitez, MTA Metro-North Railroad

Josephine Brown, MTA New York City Transit

Gregory Cabral, Program Management, MTA Long Island Railroad

Beth Capiro, Department of Subways, MTA New York City Transit

Patrick Cashin, MTA Headquarters

Lee Cloud, MTA Regional Bus Company, MTA New York City Transit

John Decker, MTA Regional Bus Company

John Hinge, Engineering & Construction, MTA Bridges & Tunnels

Patrick Ijiobe, Capital Program Management, MTA New York City Transit

Andrei Kuzin, Capital Program Management, MTA New York City Transit

Steven Loehr, Department of Subways, MTA New York City Transit

Thomas McHugh, Program Management, MTA Long Island Railroad

George Menduina, MTA Regional Bus Company/Department of Buses, MTA New York City Transit

Jim Michaels, Graphic Designer, MTA Headquarters, Marketing and Corporate Communications

Demetrios Milonas, Capital Program Management, MTA New York City Transit

Brian O'Keefe, MTA Metro-North Railroad

James Raimondi, Program Management, MTA Long Island Railroad

Gloria Russo, Environmental Planning & Compliance, MTA Long Island Rail Road

Linda Tullio, Capital Program Management, MTA New York City Transit

Wainsworth White, MTA New York City Transit

Yuko Yoshida, Capital Programs, MTA Metro-North Railroad

